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This paper presents a new modeling method for the analysis of torsional vibration of rotating 

cantilever rods. The natural frequency and mode shape variations due to the rotational motion 

could be accurately estimated with the modeling method, and the coefficients for the well 

-known Southwell equation could be obtained, as well. This method has couple of advantages 

compared to previous conventional modeling methods. Different from the previous modeling 

methods, the equations of motion of the rotating cantilever rod were derived with consistent 

linearization in a rigorous way. An eigenv,'due problem to obtain the coefficients of the 

Southwell equation of rotating rods were derived from the original eigenvalue problem. 
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I. Introduct ion  

It is well known that the modal characteristics 

of  rotating structures often vary significantly 

compared to non-rotat ing structures. Inertial 

forces caused by centrifugal motions result in the 

variations of natural frequencies and mode 

shapes. The importance of the variations has been 

recognized in many engineering examples such as 

rotating blades in turbines, turbomachines, and 

aircrafts. As modern mechanical systems become 

increasingly oriented to high-speed, light-weight, 

and low energy consumption, such variations of 

modal characteristics become more critical tbr the 

system design. 

Torsional stiffness variation due to stretching 

has been a subject of study for many researchers. 

Earlier pioneering works were performed by 

Wagner (1936) and Biot (1939). Wagner ex- 

amined the general mechanism of the effect of 
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longitudinal stresses on torsional rigidity for 

arbitrary open sections of rods, and explained the 

resulting increase in torsional stiffness intuitively. 

Biot applied the theory of elasticity to show the 

same increase in torsional stiffness. More rigorous 

works followed by other researchers. Chu (1952), 

Houbolt  and Brooks (1958), and Carnegie (1959) 

studied the effect of pretwist on torsional stiffness, 

and Niedenfuhr (1955) included the effects of  

nonlinear twist and axial tension. Budiansky and 

Meyers (1956) studied the effect of aerodynamic 

heating on the effective torsional stiffness of thin 

wings, and Goodier  (1950) investigated the effect 

of initial axial stress on torsional stiffness. Exact 

intrinsic equations for moving beams were 

presented by Borri and Mantegazza (1958) and 

Hodges (1989), and b'oth references obtained the 

same exact one-dimensional  equations. Borri and 

Merlini (1986) showed that the constitutive equa- 

tions could be obtained in an incremental analy- 

sis with the stiffening effect due to an axial force 

stemming from the constitutive law. Even though 

the stiffening effect was derived in the most gen- 

eral form, they neglected the incremental change 

in warping. A limited asymptotic approach was 

also undertaken by Berdichevskii (1981). Shield 

(1984) and Danielson and Hodges (198"7) attempt- 
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ed to obtain correct expressions for the engineer- 

ing strain, which are valid for any arbitrary 

deformations, with somewhat disappointing 

results due to the higher powers of warping 

gradients contained in the equations. Carnegie 

(1962), Hodges and Dowell (1974), and Kaza and 

Kvaternik (1974) studied the increase of torsional 

stiffness due to warping. Torsional vibrations of 

rotating rods were studied explicitly by Bogdanoff 

and Horner (1956), Duggan and Slyper (1969), 

Kaza and Kielb (1984), and Subrahmanyam and 

Kaza (1985). All the works mentioned so far led 

to a standard, or conventional approach for 

dealing with torsional vibrations. This approach, 

which is described in the next paragraph provide 

a context for introducing a new analysis proce- 

dure in this paper. 

The conventional approach used to obtain the 

natural frequencies of rotating rods can be sum- 

marized as follows. Two nonlinear partial differ- 

ential equations are derived: one governing stret- 

ching and the other governing torsion. From the 

equation governing stretching, an equation relat- 

ing the tensile force to the centrifugal inertia force 

is obtained by neglecting all other terms. Then the 

relating equation is used for the equation govern- 

ing torsion. Since the tensile force which was 

originally of first degree becomes zeroth degree 

(centrifugal inertia force), a linear equation 

containing the stretching effect due to rotation 

can be derived. The basic problem of this 

approach lies in the assumption that all terms 

other than the tensile force and the centrifugal 

force are negligible. Such assumption may or may 

not be true, in general. For instance, ifa coupling 

exists between the stretching and torsional equa- 

tions, the assumption leads to inaccurate results 

as the rotating angular speed increases. The 

assumption is not necessary for the approach 

presented in this paper, which is based on a 

rigorous and consistent linearization. Further- 

more, the tedious, complicated, and involved 

steps required for the conventional procedures are 

not necessary for the proposed approach. 

The purpose of this paper is to present a 

modeling method for torsional vibration analysis 

of rotating cantilever rods, by which one can 

accurately predict the natural frequencies and 

mode shapes. As mentioned above, the merit of 

the method lies in the simplicity, consistency, and 

rigorousness of the procedure of deriving equa- 

tions of motion. In this paper, rather than con- 

sidering all complicated effects (for instance, 

warping and eccentricity), the central issue is 

focused on the stiffness variation due to rotation. 

Kane's method (see Kane and Levinson, 1985) 

along with the assumed mode method (see Meir- 

ovitch, 1980) are utilized to derive the equations 

of motion without dealing with partial differen- 

tial equations. This paper also presents a way of 

calculating the coefficients of Southwell equations 

for rotating cantilever rods. The coefficients are 

conveniently used to calculate the torsional natu- 

ral frequencies of rotating rods. 

2. The Strain Energy of a 
Rod in Torsion and Stretching 

The system to be analyzed, shown in Fig. I, 

consists of a cantilever rod B built into a rigid 

body R (rigid hub having radius r)  in which a 

unit vector triad all, fix and d3 is fixed. The rod 

is characterized by a natural length L, material 

properties E (Young's modulus), G (shear 

modulus), p (mass per unit length), and A (cross 

--sectional area). The cross-section of the rod 

considered in this paper has high thickness ratio 

(defined by the value of the smallest dimension 

divided by the largest dimension of the cross 

-section). Let x be a distance from a point O, 

located on the elastic axis of the rod at the inter- 

section o f / 3  and R, to the shear center P of a 

a~F~xed in~R -~[.- 
~_,~L~ x _1 m_ u 

Rigid Hub R ~z~y~ a2 

M a ~ H ~  View of a Generic Cross Section o rb  

Fig. l Deformation of a rod with a unifbrm cro~s .section 
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generic cross-section of  B in the undeformed 

state. The generic cross-section is assumed to be 

rigid (i. e. no warping occurs), and rotates 

around the elastic axis of the rod. in the rigid 

cross-section, another unit vector triad /~t, /~2, 

and 5a, is fixed. In the undeformed state of  the 

rod, the unit vector triad of the rigid cross-section 

coincides with that of the rigid body R. The unit 

vectors of the rigid cross-section change their 

directions as deformation occurs. Only the defor- 

mation of stretching, denoted by u, and that of 

torsion, denoted by 0, are considered. The defor- 

mation due to warping is not considered here. 

After stretching occurs, the distance between the 

point O and the point P becomes x +  u. How- 

ever, the stretching does not alter the orientation 

of  the unit vectors fixed in the rigid cross-section 

of the rod. Only torsional movements change the 

orientation of some of  these unit vectors. The unit 

vectors fixed in B can be related to the unit 

vectors fixed in A as follows: 

5 , = ~  (1) 

/~2 = cos 052 + sin 053 (2) 

/~:~. = - sin 052 + cos 053 (3) 
where 0 is a rotational angle of the rigid cross 

section. 

Two variables, y and z, represent the projec- 

tion of  the distance from the point P to an 

arbitrary point Q of the cross-section along 

directions /~2and /~3. 

One needs to derive expressions of the strains in 

order to obtain the strain energy of the rod. For  

that purpose, Green's strain measures will be 

derived. The engineering strain measures, as well 

as their approximate expressions up to the second 

degree in the deformation variables, will then be 

formulated from the expressions of  Green's strain 

measures. Contrary to Green's strains, which 

require the corresponding second Piola Kirchhoff 

stresses to obtain the strain energy of the rod, 

engineering strains provide a direct way of 

obtaining the strain energy expression. Moreover, 

since linear equations of motion are to be der- 

ived, onty the second-degree approximation of 

the engineering strain measures are necessary. 

These approximate strain expressions are used to 

obtain the strain energy of the rod. 

In order to derive Green's strains, the following 

position vector and its tangent vectors are 

introduced. The position vector, connecting the 

points O and Q, is denoted by fi, and expressed 

as 

; 5 = ( x +  u)bl+yb2+zb3 (4) 

The tangent vectors of the position vector are 

defined as 

~x ~ a~ (5) 
= 0 x  

~y ~ a~6 (6) 
= O y  

= Oz (7) 

Therefore, from Eqs. (4), (5), (6) and (7), one 

obtains 

Cx__(l+ d U ) E _  d o e  , dO Z ~ -  Oz t y - ~ -  O3 7 (8) dx 

(~u=/~2 (9) 

d ~ = L  (10) 

Note that u and 0 are functions of  x, but not 

of y and z. Using G~, G~, and Gz, Green's strain 

measures can be expressed as follows (see Wemp- 

ner, 1973): 

1 
e x x = y ( G x  �9 C x - 1 )  (11) 

1 e ~ = T ( G ~  �9 C~-1 )  (12) 

1 e==~-(G, .  G , - I )  (13) 

7xy=Gx. Gy (14) 

7yz-- Gy �9 Gz (15) 

r~x-- G~ �9 G~ (16) 

Using Eqs. ( 8 ~  10), one obtains 

du + 1 [ du ~2+ 1 , Z + z2,[ dO ,~z 
e x x = ~  2 ~ ]  ~ Y  ~k-~tx-] (17) 

e~y= O (18) 

e ~ = O  (19) 

dO 
~'xy = - z dx (20) 

;,y~=O (21) 

dO 9,~ = y ~ -  (22) 
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Note that Eqs. (18), (19) and (21) constitute 

the conventional assumptions of Euler beam. 

If Green's strain measures were used to obtain 

the strain energy expression of the rod, one would 

need to derive the second Piola Kirchhoff stress 

expressions. However, the strain energy can be 

directly obtained from the engineering strain 

measures. The engineering strain for stretching, 

denoted by e, and be expressed as 

e = - - 1 +  ~/1 +2exx (23) 

Since linear equations of motion of the rod are 

to be derived, a second-degree approximation of 

the engineering strain is sufficient. This second 

-degree approximation of e is often referred to as 

the yon Kfirmfin strain measure of rod, and it will 

be denoted by ek. Substituting Eq. (17) into Eq. 

(23) and retaining terms up to the second-degree 

of the deformations, ek is obtained as 

du , 1, z, z,/ dOV 

The strain energy based on the von Kfirmfin 

strain measure ek and the shear strains %x~ and 

g~:, is give by 

U= U~ + U~ (25) 

where 

U~=@fL f Ee~ZdAdx (26) 

1 L U2=Tf f G(/xu+/zx)dAdx (27) 

where S represents the domain of the cross sec- 

tion of the rod. Substituting the expressions of e~, 

7xu, and 72:, into Eqs. (26) and (27) yields 

1 f L f ~ F d u  , 1, 2 

+ z2)(~x )212dAdx (28) 

1 L z 2 dO z 
U 2 - T f  f G(g +z  ) ( ~ )  dAdx (29) 

Taking advantage of the fact that u and 0 are 

independent from y and z, Eq. (28) can be 

restated as 

1 ' d O  4 
+ 8 fo  EJ2( dx ) dx (30) 

where 
/ -  

J ~= Js(y2+z2)dA (31) 

J2 ~= f (y~+ z2)2dA (32) 

Now, let's define a variables as 

s ~ u + ~ -  a da (33) 

Where a represents a ratio of J / A .  By using the 

new variable, gq. (25) can be transformed into 

the following form 

1 L ds z 1 L dO z u=sf EA(~)dx+Tf G J ( ~ - ) d x  (34) 

To be rigorous, the strain energy expression in 

Eq. (34), is not exactly equivalent to that given 

by Eq. (25). However, the difference between 

these two strain energy expressions is the fourth 

degree integral terms, which are very small 

compared with the other terms. These fourth 

-degree terms, of course, do not affect the linear 

equations of motion. Therefore, the strain energy 

expression of Eq. (34) is accurate enough to 

replace the original form of Eq. (25) for the 

present context. 

In this section, a quadratic form for the strain 

energy of the rod was derived as Eq. (34). This 

strain energy expression will be used to derive the 

equations of motion in the next section. Since the 

new variable, s, is used for the strain energy, it 

will also be included in the inertial terms in the 

equations of motion. The use of the variable, s, is 

one of the key differences between the proposed 

and the conventional methods of deriving the 

equations of motion, as the latter uses only 

Cartesian deformation variables (e. g., u) .  

3. Equations of Motion 

If the motion of the rigid base R in Fig. 1 is 

prescribed by a constant angular velocity o3 R, 

equal to Od3, without translational motion, the 

kinematic expressions of the velocity and acceler- 

ation of point P can be expressed as 

OP = udt +.Q( r +x  + u)dz (35) 

dP=[ ii-~QZ(r +x  + u)]dl+20(tdz (36) 
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where a dot over a symbol means time differentia- 

tion, and a double dot means double time differ- 

entiat ion.  Eccentricity effects (d i screpancy  

between elastic and centroidal axes) are not con- 

sidered in this paper; thus, the expressions in Eqs. 

(35) and (36) can be used to obtain the inertia 

force terms in the equations of motion of the rod. 

The angular velocity and angular acceleration of 

the rigid cross section of the rod B are 

(~;B= ~)dl +,Qd3 (37) 

~ =  0 ~ +  D~)~ (38) 
These can be used to obtain the rotatory inertia 

terms (related to the rigid body motion of  the 

cross section of the rod) in the equations of 

motion. 

As discussed in the previous section, the vari- 

able s defined in Eq. (33) will be used to derive 

the equations of motion. Therefore, in Eqs. (35) 

and (36), u, z), and //should be replaced by the 

following expressions. 

1 t "x [dOV_ 
u::s-~- jo  a~-da } aa (39) 

_ f ~ a {  dO)(  dr7 )d~ (40) 

f d{ dO)( dO')+( dO V]d  
//=s-J0 L \ d a } \ ~ }  \ d a I J  

Then, Eqs. (35) and (36) are transformed as 

[ 
~P := L "~ 

1 x d O  ~ , a(-SS ) dal6z (42) 

r.. r x r ldOWdO~+idOYqd< ~ p  

1 ~ d O  z + 

x dO dO + 
+2S2[ ~ -  f a ( - d d ) ( ~ ) d a ] a ~  (43) 

Now, by using the assumed mode method, the 

continuous variables s(x, t) and O(x, r are 

represented as 

s(x, t) q)u(x)qAt) (44) 

O(x, t) = ~. ~2s(x)qs(t) (45) 
j=t 

where 

q)i~=0 i f /z l+l--<j--<tq+Iz2 
(46) 

q)2j=0 if 1--<j<,ui 

and qh~, q)2~(j = 1,'", p)  are assumed spatial func- 

tions, qj(j:= 1,..-, /l) are generalized coordinates, 

fz~ and Ix2 are the numbers of spatial functions 

representing s and 0, respectively, and /_t is the 

total number of modal terms in the series (i.  e . , /z  

=/z~ +/z2). With this discretization, ordinary dif- 

ferential equations of motion can be developed 

using the following equation (see Kane and 

Levinson, 1985) if no external force is considered. 

foo L / Sg p \  f~ 8~ ~ " +.1o " 

(5  ~ �9 I + a 3 ~ x I  �9 o 3 B ) d x + ~ - = 0  

( i  = 1,-", /D (47) 

where pI represents the central inertia dyadic per 

unit length of the rod. The partial derivative of 

the velocity of point P with respect to the general- 

ized speed q l is 

3gP , x r 

( i =  1,..., it) (48) 

and the partial derivative of o3 R with respect to O, 

is expressed as. 

- ~ - = ~ z , a ,  ( i = 1 , . . . ,  ~) (49) 

The terms #2i,~ and q~2j,~ in Eq. (48) denote 

spatial  defferentiation of $2~,a and ~2j with 

respect to the dummy variable a representing x. 

The Eqs. (48) and (49), along with the expres- 

sions for the system strain energy and llhe acceler- 

ation of point P,  are used in Eq. (47) to derive 

the equations of motion. 

Ignoring all the nonlinear terms (in terms of the 

qr a set of linear equations of motion is 

obtained as 

. .  

J=lLaO pr qlj--~ f pr qlj 

+ foLEAr162 q,J] 

= ~z fLpXr + rD2SLpr 

( i =  1, 2, '- ' ,  /~1) (50) 
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+ 2 Lp 2 2 22 f T ( L  - x  )a~2i,x~2j,XdX Q2j)]=0 

( i = 1 ,  2,--., /z2) (51) 

where pa denotes the first component of the 

central principal inertia dyadic of the rod. It 
should be noted that the component notations, ql~ 
and q2~, are used instead of q, in Eqs. (50) and 
(51); similarly ~bl~ and ~b2~ are used instead of  ~bai 
and ~bz~. The following relations hold for these 

component notations. 

qli=qi (1 --<i</21) 
(52) 

q2i=q(i+al) (1 ~ i</22) 

~bli= ~1i (1 < i</21) 
(53) 

~2i= q)2(i+,~) (1 <i</22) 

Equations (50) and (51) show that the two sets 

of equations are completely decoupled; yet, the 

torsional stiffness variation due to rotation is 

clearly present in Eq. (51). In the next section, 

Eq. (5t) is transformed into a non-dimensional  

form which will be used to obtain the natural 

frequencies and mode shapes of  rotating cantile- 

ver rods. 

4. Modal Analysis Formulation 

In Sec. 3, a set of linear equations governing 

torsion of rotating cantilever rods was obtained in 

Eq. (51). The torsional equation set, however, 

involves several parameters and variables (e. g. p, 

L, G, J,  a, 22, t, and x), and it is useful to rewrite 
it in a non-dimensional  form. To achieve this, the 

fo l lowing  n o n - d i m e n s i o n a l  va r i ab l e s  are 

introduced. 

t (54) 

x (55) x ~  Z- 

cgj ~ q2~ (56) 
= L 

T =  2L ( ~ A ) � 8 9  ~ (57) 

Introducing these non-dimensional  variables 

into Eq. (51), one obtains: 

u2 F /-1 . -  4 r~ 

+a~ "~ (1 - x) r 

+ ~ - r 2 f l ( l  - Z2) 02.  r =0 
( i =  1, 2,..., /2z) (58) 

where Or(Z) is equal to ~b(x), and a dot over a 

symbol now means differentiation with respect to 

r. Also there appear new non-dimensional  

parameters defined as 

a " r  (59) 
= L  

)' ~ 22T (60) 

where a, defined in Eq. (59), is often called the 

hub radius ratio, and 7, defined in Eq. (60), 

represents the ratio of the angular speed of  the 

rotating rod to the fundamental natural torsional 

frequency of the non-rotat ing rod. Note that the 

cross section variable a disappeared in Eq. (58). 

Unless the warping effect is considered, the shape 

of the cross section does not affect the modal 

characteristics of  the rotating rod. The focus in 

the next section lies on the effects of two non 

-dimensional  parameters, c~ and 7, on the natural 

frequencies and mode shapes of the rotating rod. 

From the non-dimensional  Eq. (58), the 

eigenvalue problem for torsional vibrations of 

rotating cantilever rods can be derived, assuming 

that cgl s are harmonic functions of r (dimension- 

less time). If 0 represents a column matrix with 0i s 

as its elements, it can be expressed as 

O =  e~r176 e (61) 

where w is the ratio of the torsional natural 

frequency of  the rotating rod to the fundamental 

torsional natural frequency of  the non-rotat ing 

rod, and ~e is a constant column matrix character- 

izing the deflection shape of  the synchronous 
motion. This yields 

co2M$=K~ (62) 

where 1V[ and Kare  square matrices of size (/22 • 

/22), whose respective elements Mu and K~j are 
defined as 

/01 Mi~ z~ (z2dkz~dx (63) 
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Table 1 Convergence of natural frequencies with increasing number of modes 

Number of modes First frequency Second frequency Third frequency 

I 16.78144 ******** ******** 

2 16.00843 44,27073 * * * * . . . . .  

3 I5.89594 40.36260 74.66436 

4 15.83029 39.21226 67.37527 

5 15.80705 38.55679 64.70778 

6 15.78941 38.21811 63.07738 

7 15.78107 37,98298 62.12078 

8 17.77402 37.83731 61.43141 

9 15.77014 37.72639 60.96342 

10 15.76667 37.65073 60.59966 

I1 15.76457 37.58986 60.33315 

12 15.76262 37.54573 60.11646 

13 15.76136 37.50891 59.94988 

14 15,76017 37.48104 59.81027 

15 ! 15.75936 37.45716 59,69928 

16 15.75858 37.43852 59,61)417 

17 15.75803 37.42222 59.52665 

18 ! 15.75749 37,40918 59.45909 

19 : 15,75710 37,39759 59.40294 

20 15.75672 37,38815 59.35334 L__ 

K j ~  4 /-I 

f j (  "~ 

§  Z2) ~2,,z ~2j,xdX (64) 

The eigenfunctions of  the non-rotating rod are 
chosen as assumed modes; thus 

#~e(Z) = ff-Ysin[(2i - l)}X] 
( i = 1 ,  2,-.-, /~2) (65) 

These functions satisfy or thogonal i ty  condi- 

tions which make the mass matrix M the identity 

matrix. 

As the non-d imens iona l  angular  speed y 

increases the first term of  Eq. (64) becomes 

negligible compared  to other two terms. Then Eq. 

(62) can be written as follows: 

K*. ~ 8Jo'(lr 
1/, 

+- z 2 ( l - zg~ '2 , ,~ ,~ ,~dz  (68) 

As defined in Eq. (67), A denotes the square of  

the asymptot ic  slope of  the eigenvalue loci. South- 

well equat ion is written as follows: 

CO2zi : :  W2i-~- Si~(22 (69)  

where co,,, and w01 denote the i - th  aatural  fre- 

quency of  the rotating and non- ro ta t ing  structure, 

respectively, and 22 denotes the rotating fre- 

quency. As the angular  speed increases, 5" 

becomes asymptot ical ly the square of  the ratio of  

the natural  frequency to rotating frequency. Thus, 

it is equivalent  to 2 in gq.  (67). 

5. Numerical  Results and Discussions 

, ~ M ~ = K * ~  e 

where /i and K ~  are defined by 

= 

(66) In order  to obtain accurate numerical  results, 

several assumed modes were used to construct the 

matrices defined in Eqs. (63) and (64). Due to 

the proper ty  of  uniform convergence of  the solu- 
(67) 

lion for linear systems, convergence can be easily 
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Table 2 Lowest three natural frequencies with different hub radius and angular speeds 

Angular 

speed F 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.20 

Hub radius ~ = 0  

1 st Freq 

1.00005 3.00013 

1.00021 3.00051 

1.00048 3.00115 

1.00086 3.00204 

1.00134 3.00319 

1.00193 3.00459 

1.00262 3.00624 

1.00343 3.00815 

1.00433 3.01030 

1.00535 3.01271 

1.02119 3.05039 

0.30 1.04700 3.11172 

0.40 

0.50 

1.08197 3.19477 

1.12514 3.29722 

1.17552 3.41670 

1.23213 3.55088 

1.29410 3.69766 

1.36064 3.85519 

1.43107 4.02189 

2.25908 5.98424 

3.18415 8.19283 

4.14291 10.50158 

5.11711 12,86308 

6.09961 15.25574 

7.08706 17.66817 

8.07770 20.09381 

9.07051 22.52867 

10.06485 24.97020 

0.60 

2nd Freq 3rd Freq 

5.00021 

5.00083 

5.00187 

5.00333 

5.00520 

5.00748 

5.01018 

5.01329 

5.01681 

5.02074 

5.08220 

5.18216 

5.31737 

5.48397 

5.67796 

5.89548 

6.13303 

6.38756 

6.65646 

9.80029 

13.32542 

17.01677 

20.80028 

24.63927 

28.51364 

32.41170 

36.32628 

40.25280 

1st Freq 

1.00014 

1.00056 

1.00126 

1.00224 

1.00350 

1.00503 

1.00685 

1.00893 

1.01128 

1.01391 

1.05425 

1.11753 

1.19941 

1,29579 

1,40331 

1.51938 

1.64205 

1.76989 

1.90184 

3.33580 

4.85063 

6.39178 

7.94471 

9.50389 

11.06674 

12,63195 

14.19875 

15.76667 

0.70 

0.80 

0.90 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

10.00 

Hub radius ~--1 Hub radius 8 = 5  

2nd Freq 3rd Freq 1st Freq 2nd Freq 3rd Freq 

3.00032 5.00052 1 .00049  3.00109 5.00177 

3.00128 5.00209 1 .00195 3.00437 5.00709 

3.00289 5.00469 1 .00437  3.00982 5.01593 

3.00513 5.00833 1 .00775 3.01742 5.02825 

3.00801 5 .01301  1 .01208  3,02714 5.04401 

3.01152 5 .01871  1 .01733  3.03894 5.06315 

3.01566 5.02544 1 .02349 3.05279 5.08560 

3.02042 5.03318 1.03054 3.06862 5.11127 

3.02582 5.04193 1 .03845 3.08639 5.14008 

3.03181 5.05168 1.04720 3.10605 5.17193 

3.12404 5.20145 1.17446 3.39162 5.63411 

3.26858 5.43585 1 .35484  3.79575 6.28606 

3.45543 5.73833 1.56751 4.27157 7.05074 

3.67518 6.09333 1.80010 4.79163 7.88340 

3.92013 6,48816 2.04559 5.34062 8.75972 

4.18441 6.91319 2.29987 5.90982 9.66642 

4.46366 7.36126 2 .56041  6.49396 10.59596 

4.75469 7.82735 2.82559 7.08969 11.54375 

5.05516 8.30774 3 .09431  7.69475 12.50675 

8.33886 13.54030 5.87367 14.03084 22.63519 

11.85229 19.15410 8.71373 20.59440 33,17148 

15.46048 24.93079 12.57183 27.23634 43..84776 

19.11660 30.80603 14.43757 33.91400 54.58549 

22.79976 36.72306 17.30724 40.61021 65.35517 

26.49943 42.66927 20.17918 47.31728 76.14349 

30.20986 48.63441 23.05255 54.03125 86.94359 

33.92766 54.61244 25.92689 60.74986 97.75162 

37.65073 60.59966 28.80190 67.47174 108.56521 

Table 3 Comparison of the first non-dimensional natural  frequency 

Hub radius 
Angular speed 

0.01 

0.10 

1.00 

Present result 

1.00005 

1.00535 

1.43107 

Re , fence  result 
{Bogdanoffand Horner 

1.00005 

1.00498 

1.41421 

Discrepancy 
(%) 

0,000 

0,037 

1.192 

1 0.01 1.00014 1.00011 0.003 

1 0.10 1.01391 1.01273 0.110 

1 1.00 1.90184 1.88733 0.769 

5 0.01 1.00049 1.00044 0.005 

5 0.10 1.04720 1.04312 

5 1.00 3.09431 3.13209 

0.391 

I 1.221 
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8 = 1  

g ~  - 8 = 5  

N 

lo 

Z 

o 
O0 05 10 1.5 

Non-d imens iona l  angular  speed  

F ig . ,  2 N a t u r a l  f i e q u e n c y  vs .  a n g u l a r  s p e e d  

20  

checked by monitoring the difference between 

results using less modes and those using more 

modes. Table I shows, typical results of three 

lowest natural frequencies for a rotating rod when 

o ~ is 1, and 9, is 10. As shown in the table, the 

natural frequencies are converging rapidly as 

more modes are added. Especially, it is shown 

that the convergence of the lower modes is faster 

than the higher modes. Since the results of using 

20 modes are only slightly different from those of 

using 10 modes, all the results shown hereafter 

were obtained by using lO modes. 
Table 2 displays the lowest three non-dimen- 

sional torsional natural frequencies for various 

values of two parameters: a and ~'. The table 

shows that all three non-dimensional  torsional 

natural frequencies increase with y, which is an 

intuitively expected result. However, since the 

fundamental torsional natural frequencies of can- 

tilever rods are usually quite high, the actual 

variations of natural frequencies are small when 

rods rotate slowly. For instance, for a rod of 

fundamental torsional natural frequency of 300 

rad/s  rotating at 6 rad/s,  the variation of the first 

natural frequency is less than O. 07 rad/s  (for a - -  

O), Even with a quite large hub radius (for g = 5 ) ,  

the frequency increase is less than 0 .6  rad/s.  This 

small frequency variation might be important 

only for very accurate design of mechanical sys- 

tems. Variations of natural frequencies, however, 

become quite large when rods rotate fast. For  

instance, if the same rod (introduced above) 

rotates with an angular speed of 150 rad/s,  the 

13 - -  

12 

c~ 

B 

6 

= 5 

O 

Fig, 3 

- - -  " / = D I  

y = 0 5  " 

- y = 1 0  _ 

. . . . . . . . . .  -71 i ~ ~ - : - r - : =  --  

1 2 3 

Hub radius ratio 

N a t u r a l  f r e q u e n c y  vs .  h u b  r a d i u s  r a t i o  

120 

100 

w  

g 

20 

Firs t  Southwel l  coeffkzient 

Second  Sou thwe l l  coeff icient  

Th i r d  S o u t h w  ell c oefflc ienl 

0 .... i .... �9 ~ . . . . . .  I-- -i I . . . . .  -x  . . . . . .  
0 "~ 2 3 4 

Hub radius ratio 

F i g .  4 S o u t h w e l l  c o e f f i c i e n t s  vs .  h u b  r a d i u s  r a l i o  

variation of its first natural frequency is about 37. 

5 rad/s,  Thus, the first natural frequency of the 

rotating rod becomes approximately 32~7.5 rad/s.  

The variations of the second and third natural 

frequencies are even larger than that of the first 

natural frequency�9 The second and third natural 

frequencies are originally 900 rad/s  and 1500 

rad/s  when the rod does not rotate. They become 

approximately 989 rad/s  and 1645 rad/s  when the 

rod rotates with an angular speed of 150 rad/s.  

Thus, the variations are 89 rad/s  and 145 rad/s,  

respectively, h should be noted, however, that the 

relative increase ratios (the ratios of the varia- 

tions to the non-rotat ing natural frequencies) of 

the second and third natural frequencies are 

slightly smaller than that of the first natural fre- 

quency. Table 2 also shows that the increase in 

natural frequencies due to rotation is larger when 

(3 increases This result is also expected: as the 
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hub radius becomes larger, the centrifugal force 

becomes larger, and thus, the stiffening effect 

induced by the centrifugal force increases. 

To complement the information in Table 2, 

Figs. 2 and 3 display the variation of the natural 

frequencies versus system parameters. In Fig. 2, 

the lowest three frequencies are plotted versus 7, 

Three cases of hub radius ratio are shown in the 

figure. The solid line is for 6̀  0, the dotted line 

for 8=1 ,  and the broken solid line for 8=5 .  The 

figure clearly shows that natural frequencies 

increase with the angular speed and that increase 

ratio becomes higher for larger hub radius. In 

Fig. 3, the natural frequencies are plotted versus 

8, the ratio of the hub radius to the rod length, for 

three values of angular speed ratios: solid lines 

are for ),=0.1, dotted lines for 7=0 ,L  and bro- 

ken solid lines for 7 =  1.0. Figure 3 shows clearly 

that the torsional natural Frequencies change very 

little when ?, is small as 6" increases, For instance, 

solid lines look nearly flat in the figure. However, 

for larger 7, the natural frequencies change more 

rapidly. Therefore the stiffening effect due to the 

increase of the hub radius on the natural fre- 

quencies of a rotating rod becomes significant 

only when the angular speed is relatively high. 

The results presented in this paper are compar- 

ed to other results for the accuracy confirmation. 

Table 3 presents the first natural frequency of the 

rotating cantilever rod with three different hub 

radius ratios (6')and varying angular speed ratios 

( r) ,  The results by the present approach and 

those by Ref. (Bogdanoff and Homer, 1956) are 

compared in the table. The comparison shows 

resonable agreement (maximum difference of 1. 

2%) between the two results. 

Figure 4 shows the variations of first three 

lowest Southwell coefficients (vs. the hub radius 

ratio 3) obtained by the eigenvalue problem of 

Eq. (66). The variations of the Southwell coeffi- 

cients look almost like straight lines Table 4 

compares the results obtained by the present 

approach to those by Ref. (Bogdanoff and Hor- 

net, 1956). In Ref. (Bogdanoffand Homer, 1956), 

the Southwell coefficient of the first torsional 

natural frequency is given as a linear function of 

the hub radius ratio. The table shows that the 

discrepancy between the two results increases as 

the hub radius ratio increases. 

The effect of rotation on the torsional mode 

shapes is another important subject. Mode shape 

information is often used in the design of mechan- 

ical systems. For example, knowledge of the loca- 

tions of the nodes (the zero displacement points) 

are of great importance in the control of mechani- 

cal systems. Figure 5 shows the variation of the 

lowest three mode shapes of the rod in torsion. 

Solid lines represent the mode shapes of the non 

-rotating rod and dotted lines are for the rotating 

rod with 7=10  (in both cases 6`=1). One can 

observe that the nodal points move toward the 

free end of the rod when the rod rotates. 

Non-rotating beam 

0.8 

(a) First mode shape variation 

i ' Non-rotating heam "' \ " - 
Rotattng beam 

-00 012 0'4 OB 08 

(b) Second model shape variation 

i !  - 

\ 
Non-rotating {5"e, am 
Rolaling beam 

" ' 0 ' . 2  0 4  ' " 0 6 "  ' 018 

(c) Third model shape variation 

Fig. 5 Variation of mode shapes (non-rotating beam vs 
rotating beam) 
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Table  4 C o m  

Hub radius 
c~ 

0.0 

9rarison of the southwell coefficients for the first natural fi;equency 

Present result 

1.001 

Reference result 
(Bogdanoff and ttorner) 

1.000 

0.5 1.742 1.781 

1.0 2.473 2.562 

1.5 3.201 

2.0 3.928 

2.5 4.654 

3.0 5.380 

3.5 6.101 

4.0 

4.5 

5.0 

3.343 

4.124 

D iscrcpa ncy" 

0. I o 

2.19 

3.a7 

4.25 

4.75 

6.831 

7.556 

8.281 

4.905 5.12 

5.686 5.38 

6.467 5.66 

7.248 5.75 

8.029 5.89 

8.810 6.00 

6. Conclusions  

A simple and consistent formulation for deriv- 

ing the linear equations of motion governing the 

torsional vibrations of rotating rods is presented 

in this paper. The formulation eliminates unneces- 

sary, complicated, and perhaps inconsistent steps 

involved in the conventional method. The key 

step of this formulation is the introduction of a 

quadratic strain energy form, expressed in a non 

-Cartesian deformation variable, which includes 

the elastic coupling between the axial tension and 

the torsion of rods, and thus enables the presented 

formulation to accurately predict torsional natu- 

ral frequencies and mode shapes of rotating rods. 

Two non-dimensional  parameters are identified 

through a dimensional analysis: the ratio of the 

angular speed of the rigid hub to the fundamental 

torsional natural frequency of the non-rotating 

rod, and the ratio of the hub radius to the rod 

length. It is shown that the non-dimensional  

natural frequencies increase with the angular 

speed, and the increase rate becomes higher as the 

hub radms ratio increases. The eigenvalue prob- 

lem was modified to derive another eigenvalue 

problem from which one can obtain the South- 

well coefficients. The results obtained by the 

present approach are in good agreement with 

some existing results. It is also shown that mode 

shapes change significantly when rods rotate. 

Specifically, nodal points move farther fi;om ~.he 

center of rotation when the rotation speed 

increases. Lastly, it should be emphasized that the 

present work claims by no means solutions R~r 

general problems. The method presented in this 

work is restricted to rods with cross sections Of 

high thickness ratio. However, the significance of 

general cross section shape as well as the warping 

effect can be investigated with a reference such as 

the one presented in this paper. 
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